Systems Analysis and Design
Program Design
Chapter 10
Key Definitions
Program design - creating instructions for the programmers
The top-down, modular approach - begin with the “big picture” and gradually add detail

Program design document - all structure charts and specifications needed by programmers
to implement the system

Ao) iy el

Cna_all iladat o L) - i il aranasl

Jnaliill Lny 55 ddla) 5 "8 S 5 g e fah - las g cJiad) e e el

ALl 30 e paal) e sl il gl A1) i) s - el) e 4 5

MOVING FROM LOGICAL TO PHYSICAL PROCESS MODELS
Analysis phase - focus on logical processes and data flows
Design phase - create physical process models showing “how” the final system will work

Physical process models convey the “system view” of the new system
Al 30 laad) el) (A gad oy JUESY)
bl calsays g dalaiall bleall e 3€ pill - Jalail) Al ya
Jand g Al aldail) MCast eal dolasl) dlaal) kel e L) - apanail) Als e
aal) AUasll "alatl) i je " Ja55 dalal) daleal) i

The Physical Data Flow Diagram

The physical DFD contains the same components as the logical DFD, and the same rules
apply (e.g. balancing, decomposition, etc.)

There are five steps to perform to make the transition to the physical DFD

Aoalal) i) (8as Jakada
(A3) e s Il 5 5 3) gl Jia) o) gil) (puit Balaii 5 ¢ ibaial) DFD e L <ili Sall e Jaill DFD s sia
28l DFD) JEY) Jaad ¢1aY <l shad uad @llia

Steps to Create the Physical Data Flow Diagram

Aoalal) Uil 380 Jabhdla pLAS) < ghad

Explanation

Add implementation references Using the existing logical DFD, place the way in which the
data sfores, data flows, and processes will be
implemented in parentheses below each component

Draw a human-machine boundary Draw a line to separate the automated parts of the system
from the manual parts.
Add system-related data stores, Add system-related data stores, data flows, and processes
data flows, and processes to the model {components that have litle to do with the
business process).
Update the data elements in the Update the data flows to include system-related data
data flows elements.
Update the metadata in the Update the metadata in the CASE repository fo indude
CASE repository physical characteristics.

CASE = computeraided software engineering; DFD = data flow diagrom

The Physical Data Flow Diagram (The How)

(<isS) Aalall clib) (385 Jakadia

Search Request Input Form

Oracle: CD record — Basic Info

Search Results Report (C Program)

Oracle: CD Table

Step 1

Oracle: CD record — Detailed Info
Information Request Input Form

CD Information Report

Provide CD - mgracle: Marketing Table
Information Oracle: Marketing
I I N D Step 2 (C Program) Material record
= i Store Locator Input Form q
Stom ey I_ Find Stores ﬂ Oracle: Inventory Table
1 = Store Location Report (C Program)
Oracle: Inventory record

CD Request Input Form

Place CD in
Shopping
Cart

CD Request Report

(C Program)

ASCII: CD Record
Oracle: Hold Table

Customer Input Form

Oracle: Hold record
In-Store Hold Confirmation Message Check Out

Special Order Confirmation Message (C Program)
l Special Order I

ASCII: order record System
Step 3 p -
\E ASCII: Order History File

Using a Top-Down Modular Approach
Jiud A el o cilaa g g aladin

First, understand the
general context.

Virginia

Second, break the context
into logical pieces.

Finally, add detail
to each piece.

The Structure Chart =

Important program design technique

Shows all components of code in a hierarchical format o
Sequence (in what order components are invoked) »
Selection (under what condition a module is invoked) »

Iteration (how often a component is repeated) »

Jel) Jahaie
Aokl eyl aaa’ A5
o oy Ll Cilagletl] s oS0 BS)
" (AUall U S sl dind ol Lo (3) el
(Aokaai 3as 5 eledind Aty Ja i (gl Cand) yaail)
(CsSall L S Ll @l el dae)) Sl

Structure Chart Example @

JSgl) halada o Jlia

End
of file

7

Student Grade

Grade
Record

1.1 12

GET STUDENT
GRADE
RECORD

Recordj f
C

CALCULATE
CURRENT
GPA

1.0
CREATE
STUDENT
GRADE LISTING

Grade
Record

GPA
urrent

GPA

1.3
CALCULATE
CUMULATIVE
GPA

Student

C\SASN
Student
\ij@
Cumulative

Cumulative

C\f PA
Current

LISTING

Structure Chart Elements

Al hhidl) jalic

m e

Every rrrodiele:
- Has a2 number

- Is &2 subordinate module if it
is controlled by & module at o
higher level

Denotes a logical piece of
the program

cALCULATE
CURRENT GPA

Every lifrrciry rrrcrclicle has:
-A number
- A name
- Multiple instances within a
diagram

Denotes - logical piece of
the program that is repeated
within the structure chart

Y=Y

GET STUDENT

= RAD
RECORD

N o
- Is drawn using a curved
arrow
- Is placed around lines of one
or more modules that are
repeated

Communicates that a
module(s) is repeated

A coricdiricoorical lirzes
- Is drawn using = di

condition

Communicates that
subordinate modules are
invoked by the control
module based on some
condition

A darrer coreprle:

Contains an arrow
Contains an empty circle
Names the type of data
that is being passed
- Can be passed up or down
- Has - direction that is

denoted by the arrow

A corrrrol corgprle:

- Contains an arrow

- Contains a filled-in circle

- Names the message or flag
that is being passed

- Should be passed up. not
down

- Has o direction that is
denoted by the arrow

An aﬁ e corirrecro.
- Is denoted by the hexagon
- Has a title
- Is used when the diagram is
too large to fit everything on
the same page

Communicates that data
is being passed from one
module to another

Communicates that =
message or & system ﬂag is
being passed from on
module to another

Identifies when parts of the
diagram are continued

on another page of the
Structure chart

AN orr—prorsze coriricarort
- Is denoted by the circle
- Has = titlie
- Is used when the diagram is
too large to fit every‘thlng in
the same spot on - pa

Identifies when parts of the

Page of the structure chart

PRINT
SRADE
LISTING

Building the Structure Chart =

Processes in the DFD tend to represent one module on the structure chart =
Afferent processes - provide inputs to system *

Central processes - perform critical system operations »

Efferent processes - handle system outputs »

The DFD leveling can correspond to the structure chart hierarchy (e.g., the process =
on the context-level DFD would correspond to the top module on the structure
chart)

Al Bhaiall oLy

Sl bbadll e saal g kst 3as g Jiil DFD (& Sbleal) ol

Al 1) cdlane 4 - dlalie cillee

da jall alaill cillee 385 - 4y 3 all Cilleal)

{.LL.'J\ agp@@w\-um Gllee

G stuse sle Aleal) (JE Qs o) ASsel) ISaell o el Jusdasill s DFD 4y pui i of ¢Sy
(Ssed) bhadll e e ddaaill sas gl ae (38 st 3Ll (5 sie JeDFD

Types of Structure Charts o

Transaction structure - control module calls subordinate modules, each of which =
handles a particular transaction

Few afferent processes >
Many efferent processes »
Higher up levels of structure chart »

Using inputs to create a new output »

gl cillabiall 1 il
Ame Alalas gl Leia JS cdge Hall Clas sl geay oSl 3o g - S laall JSoa
GOlidasll e Lol 22e
G Ha) Glalasd) e 2=l
) il IS (e el il st pla
Baaa Gila jhe LAY GOAAA aladdul

Transaction Structure

Alalaall JSaa
1.0
STUDENT
GRADE SYSTEM
1.1 12 1.3 1.4
MAINTAIN M AINT AIN GENERATE PRINT
STUDENT STUDENT INDIVIDUAL STUDENT
GRADE GRADE REPORT GRADE LISTING

Transform Structure ®

This structure has a control module that calls several subordinate modulesin
sequence after which something “happens.”

These modules are related because together they form a process that transforms o
some input into an output

Jaadl) Joa
M o Gl das Julo 3 A Claa gl e dsanll pe 5) aSatll Baa g sl JSsel) 138
Gla e) ERA (any Jsat dalae JS e LY Clas gl o3 dasi 5

Transform Structure ®

End

of ﬁl.(Vj

\ Cumulative

Grade o \
Student . Record / 2 . 5 GPA
Grade / 14
Record © v [4 Current Y PRINT
GPA GRADE
LISTING
14 1.2 1.3
GET STUDENT CALCULATE CALCULATE
GRADE CURRENT CUMULATIVE
RECORD GPA GPA

Jasadll Js
1.0
CREATE
STUDENT
GRADE LISTING 15
+» PRINT
DEAN’'S
LIST

Transform versus Transaction Structures

Transaction structure

e alaall JSba Jilia Jy sl

|1 R | o |

Transform Structure

2 A
)

Afferent processes Central processes

Transaction Structures:

- Few afferent processes

- Many efferent processes

- Higher levels of the structure chart

- Concerned with coordinating the production
of outputs

Efferent processes

Transform Structures:

- Many afferent processes

- Few efferent processes

- Lower levels of the structure chart

- Concerned with using inputs to create

a new output

Steps in Building the Structure Chart
oy A (gl $Us il g
1-ldentify top level modules and decompose them into lower levels
2-Add control connections
3-Add couples

4-Review and revise again and again until complete

i il sise () ellaty e (5 sivall Gilan 5 aaa3.]
é;ﬂ\ OYlai) d8ls)-2

z)soY dilal)-3

ALIS i 1l S5 1)) ya ol s Aanl a4

Design Guidelines

High quality structure charts result in programs that are modular, reusable and easy to implement.
Measures include:

Cohesion

Coupling

Appropriate levels of fan-in and fan-out

prasall Slg 54

20 gy Lealaiud ale] (S cclin sy o 3 el) (g illlaadl) (S 535l ke
bl Jadi g

EI DA

o)y

@20 Aa g pall g (B da g e (e Aanlia D sl

Types of Cohesion (GPA = grade point average)

(J3xe Caall da 2 = GBA) cluladll ¢ i

Type Definition Example
Good Functional Module performs one problem- Caleulate
related task. Current GPA
The module caleulates current GPA
only.
Sequential Output from one task is used by Format and
the next. Validate

Current GPA

Two tasks are performed, and the
formatted GPA from the first task is
the input for the sacond fask.

Communicational | Elements contribute to octivities Coledlate
that use the same inputs or out- Current and
puts. Cumulative

GPA

Two tasks are performed because
they both use the student grade
record as input.

Procedural Elements are performed in Print Grode

sequence but do not share data. listing

The module includes the following:
housekeeping, produce report.

Temporal Activiies are related in fime. Initiclize
Program
Variables

Although the tasks occur at the
same time, each task is unrelated.

Cohesion Decision Tree (Adopted From Page-Jones, 1980)

(1980 c}};—m %) .Luc\) J\)ﬂ\ [P EINN]

Does the module
do one thing?

Yes: Functional
cohesion

No: How are the
tasks related?

Yes: Sequential
cohesion

—» Data: Is sequence
important?

No:
— Communicational
cohesion

Yes: Procedural

cohesion
Flow of control:
— Is sequence
important?
» No: Temporal
cohesion
|
Neither: Are the
, tasks related to
the same general
category? S Coingi
gory No: Coincidental
cohesion

Factoring
-Process of dealing with “low" cohesion
-Separates tasks into different modules

-Reduces use of control flags

Ala gal)

" addiall elulall pe Jalail dlee -
dilise Glas g) algall Juaiy
aSadll 2o alasin) (e JB -

Type

Good Data

Bad

(018 ¢ 1551)Types of Coupling

Definition
Modules pass fields of data
or messages.

Example

Update Student
Record

Student DJf .

GPA

Calculate
Current GPA

All couples that are passed
are used by the receiving module.

Modules pass record
structures.

Update Student
Record

Student |
Record gl';:ent

Calculate
Current GPA

Not all of the student record is
used by the receiving module;
only the student ID field is.

Control

Module passes a piece of
information that intends to
control logic.

Update Student
Record

Student IDi

Current or

Cumulative
Current or l GPA

Cumulative
Flag

Calculate Current
or Cumulative GPA

The receiving module has to
determine which GPA to
calculate.

Modules refer to the same
global data area.

Typically, common coupling
cannot be shown on the
structure chart; it occurs when
modules access the same data
areas, and errors made in those
areas can ripple through all the
modules that use the data.

Content

Module refers to the inside
of another module.

Module A: Update Student

If student = new
Then go to Module B

Module B: Create Student
At all costs, avoid modules

referring to each other in this
way.

Your Turn
What, if anything, happens to coupling when you create modules that are more cohesive?

What, if anything happens to the cohesiveness of modules when you lower the coupling
among them?

‘ﬂJJA
flSula ST s g ol die ol 38 o od ol a8 1) euany 13k

et Lasd ol yB) (mdd die Cilas g eluladl ¢ 3 ol Gaaa 13 (3l

Examples of Fan-in and Fan-out

Fan-in = aa) 5 Juieeal < HLS) 4pa 63

fan-out = (el sae) o LAl 4xa

1.1 S 1.3 1.1 1.2 1.3
Calculate Print Calculate Calculate Print Calculate
Employee Employee Benefits Employee Employee Benefits

Salary Roster Salary Roster
112 131 1.2 1.3.1
Read Read Read Read
Employee Employee Employee Employee
Record Record Record Record
(a) (»)
1
Pay
Employee
)il £l 1.3 1.4 1.5 1.6 T 1.8
Read Calculate Calculate Calculate Calculate Print Update Print
Employee Employee Employee IRA Social Paycheck Payroll Payroll
Record Salary Benefits Contribution Security File Report
()
1
Pay
Employee
el A= 1.3 1.4
Read Calculate Print Update
Employee Salary Paycheck Payroll
Record
AL qESE2 1.2.3 1.2.4 1.4.1 1.4.2
Calculate Calculate Calculate Calculate Record in Print
Employee Employee 1IRA Social Payroll Payroll
Salary Benefits Contribution Security File Report

Quality Checklist »

1-Library modules have been created where ever possible

2-The diagram has a high fan-in structure

3-Control modules have no more than 7 subordinates

4-Each module performs only one function (high cohesion)

5-Modules sparingly share information (loose coupling)

6-Data couples that are passed are actually used by the accepting module

7-Control couples are passed from “low to high"

8-Each module has a reasonable amount of code associated with it
Bagall A o daild

Lo &l S Wafian 2581 ilaa g o LS| 521
dS A Adle da g ye 4l (Sld) e l1-2
Oyl 7 0o 25 Y L Ll pSail) Cilas 5-3
Llle elulaill) Laib sasl 5 dduda g olol 3as 5 JS-4)
(Laliumd o) 581) e slaal) anlite J<iy & HLES Gl -5
Jsd8an 5 08 (e Dlad 22305 W e oy Al libd) 215 59)-6
Ml) Al (e g e ol 531 a7
4 A pal) Ao l) laglall (a A sine 2aS Lyl 52n 5 JS-8
Program Specifications Content *
No standard approach
Include program information
Note events that trigger actions
List inputs and outputs
Include pseudocode
Present additional notes and comments
s siaal) mald jull Cldual ga
UV I PRIRENPERNY
i) il slas (ppanca
el palY) a5 G Elaall Ly
il il 5 cdlaaal) Al
358 59 3y Cppana
Al il 5 HUaa e o

Program Specification Form

Tk clial ga G:U‘“.

Program Specification 1.1 for ABC System

Purpose:

C PowerScript CcOBOL Visual Basic

Input Name Type Used By Notes

eeeeeeeeee

Pseudocode Example

(Get_CD_Info module]
Accept (CD.Title] {Required}
Accept (CD . Artist] {Required]
Accept |{CD.Category) {Required}

Accept (CD.Length)
Return

Process Description — Analysis and Design

M‘JM"M‘MJ

Label:
Entry Type:

Description:

=] B3

]Accepl Returned Book from User

l Process

| 1012

Remove a copy from a user.

Process #: |2.2.3 I
Process If not Copy Checked Out. not Limit Exceeded & Valid User. il
D ipti r the User-Copy relationship and increment the

Number Checked Out (in User_] field and pass User List and

Checkout List information on. If the Date Due Back is < the =
Notes: =1

Long Name:

I SQL Info ll Delete

| Next " Save " Search

| Jump II File

(=<1l =]1l=z]

I History II Erase

I Prior " Exit I[Exngnd

I Back II Qcomp

r Search Criteria

| Enter a brief description about the object.

Analysis Phase
Process Specification
with structured English
process description

Label:
Entry Type:

Description:
Process &:

Process
Description:

lAccepl Returned Book from User

[Process

Remove a copy from a user.

[2-2.3

(Find_copy module]
Find copy via the id
If no copy is foun

d

Set copy_not_found True

Long Name:

T d from

] : copy ID. user id
outputs: copy_not_found
business rules: copies that are more than a year overdue have been

tory

Design Phase Process
Specification:

= structured English has
been changed to
pseudocode

relevant specification
information like
inputs, outputs, and
business rules have
been added to the
Notes section

[

I SOL Info Il D

elete

I Next Il Save ll Search || Jump II

File

UM K T

[

l History II Erase

[_erior |

Exit

[Expand ||

Back I] Qcomp

| Search Criteria

Notes are optional pieces of information about an object. Notes can be up to 32,000 characters.

By : Shadia Alsolami & Nouf Binoryan

good luck for all

